31.29. Model: Assume ideal connecting wires. **Visualize:** Please refer to Figure Ex31.29. **Solve:** The resistance R is given by Ohm's law, $R = \Delta V_R/I_R$. To determine I_R we use Kirchhoff's junction law. The input current I splits into the three currents I_{10} , I_{15} , and I_R . That is,

$$2.0 \text{ A} = I_{10} + I_{15} + I_{R} = \frac{8 \text{ V}}{10 \Omega} + \frac{8 \text{ V}}{15 \Omega} + I_{R} \Rightarrow I_{R} = 2.0 \text{ A} - 0.8 \text{ A} - 0.533 \text{ A} = 0.667 \text{ A}$$

Using this value of I_R in Ohm's law,

$$R = \frac{8 \text{ V}}{0.667 \text{ A}} = 12.0 \Omega$$